Overexpression of mutated Cu,Zn-SOD in neuroblastoma cells results in cytoskeletal change.
نویسندگان
چکیده
Amyotrophic lateral sclerosis (ALS) involves the progressive degeneration of motor neurons in the spinal cord and the motor cortex. It has been shown that 15-20% of patients with familial ALS (FALS) have defects in the Sod1 gene, which encodes Cu,Zn-superoxide dismutase (SOD). To elucidate the pathological role of mutated Cu,Zn-SOD, we examined the issue of whether mutated Cu,Zn-SOD affects the cell cycle. Mouse neuroblastoma Neuro-2a cells were transfected with human wild-type or mutated (G37R, G93A) Cu,Zn-SOD. Mutated, Cu,Zn-SOD-transfected cells exhibited marked retardation in cell growth and G2/M arrest. They also displayed lower reactivity to phalloidin, indicating that the cytoskeleton was disrupted. Immunoprecipitation, two-dimensional gel electrophoresis, and Western blot analysis indicated that mutated Cu,Zn-SOD associates with actin. Similar results were obtained by in vitro incubation experiments with purified actin and mutated Cu,Zn-SOD (G93A). These results suggest that mutated Cu,Zn-SOD in FALS causes cytoskeletal changes by associating with actin, which subsequently causes G2/M arrest and growth retardation.
منابع مشابه
Regulation of Cu-Zn superoxide dismutase on SCN2A in SH-SY5Y cells as a potential therapy for temporal lobe epilepsy
In order to evaluate SCN2A as a candidate gene for epileptic susceptibility and the use of a Cu-Zn superoxide dismutase (SOD) supplement as a potential therapy for epilepsy, SCN2A expression in the cortex and the correlation between SCN2A and Cu-Zn SOD in SH-SY5Y cells were examined. SCN2A expression and the concentration of Cu-Zn SOD in the cerebral cortexes of patients with primary and second...
متن کاملSuperoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors.
Several antioxidant enzymes, including copper, zinc-superoxide dismutase (Cu, Zn-SOD) and catalase, have been suggested to be protective against the proliferation of vascular smooth muscle cells exposed to oxidative stress. In the present study, we investigated effects of Cu, Zn-SOD and/or catalase on oxLDL-induced proliferation of, and intracellular signaling in, human aortic smooth muscle cel...
متن کاملOverexpression of Cu-Zn SOD in Brucella abortus suppresses bacterial intracellular replication via down-regulation of Sar1 activity
Brucella Cu-Zn superoxide dismutase (Cu-Zn SOD) is a periplasmic protein, and immunization of mice with recombinant Cu-Zn SOD protein confers protection against Brucella abortus infection. However, the role of Cu-Zn SOD during the process of Brucella infection remains unknown. Here, we report that Cu-Zn SOD is secreted into culture medium and is translocated into host cells independent of type ...
متن کاملRetardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E.
Oxidative stress has been suggested to potentiate atherogenesis. However, studies that have investigated the effect of antioxidants on atherosclerosis showed inconsistent results, ie, atherosclerosis was either retarded or not changed by dietary antioxidants. This report directly examined the effect of overexpressing Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and/or catalase on atherosclerosis and ...
متن کاملEffects of wild-type and mutated copper/zinc superoxide dismutase on neuronal survival and L-DOPA-induced toxicity in postnatal midbrain culture.
Mutations in the free radical-scavenging enzyme copper/zinc superoxide dismutase (Cu/Zn-SOD) are associated with neuronal death in humans and mice. Here, we examine the effects of human wild-type (WT SOD) and mutant (Gly93 --> Ala; G93A) Cu/Zn-SOD enzyme on the fate of postnatal midbrain neurons. One-week-old cultures from transgenic mice expressing WT SOD enzyme had significantly more midbrain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 288 2 شماره
صفحات -
تاریخ انتشار 2005